Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.975
Filtrar
1.
Endocrinology ; 165(6)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38712392

RESUMO

Long-term ß-adrenoceptor (ß-AR) stimulation is a pathological mechanism associated with cardiovascular diseases resulting in endothelial and perivascular adipose tissue (PVAT) dysfunction. In this study, we aimed to identify whether ß-adrenergic signaling has a direct effect on PVAT. Thoracic aorta PVAT was obtained from male Wistar rats and cultured ex vivo with the ß-AR agonist isoproterenol (Iso; 1 µM) or vehicle for 24 hours. Conditioned culture medium (CCM) from Iso-treated PVAT induced a marked increase in aorta contractile response, induced oxidative stress, and reduced nitric oxide production in PVAT compared to vehicle. In addition, Iso-treated PVAT and PVAT-derived differentiated adipocytes exhibited higher corticosterone release and protein expression of 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1), an enzyme responsible for de novo synthesis of corticosterone. Macrophages exposed to Iso also exhibited increased corticosterone release in response to ß-AR stimulation. Incubation of Iso-treated PVAT and PVAT-derived differentiated adipocytes with ß3-AR antagonist restored aorta contractile function modulated by Iso-CCM and normalized 11ß-HSD1 protein expression. These results show that ß3-AR signaling leads to upregulation of 11ß-HSD1 in PVAT, thus increasing corticosterone release and contributing to impair the anticontractile function of this tissue.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Corticosterona , Isoproterenol , Ratos Wistar , Animais , Masculino , Ratos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Isoproterenol/farmacologia , Corticosterona/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Tecido Adiposo/metabolismo , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Receptores Adrenérgicos beta/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Óxido Nítrico/metabolismo , Meios de Cultivo Condicionados/farmacologia
2.
Am J Physiol Cell Physiol ; 326(5): C1334-C1344, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557356

RESUMO

Cardiac maturation represents the last phase of heart development and is characterized by morphofunctional alterations that optimize the heart for efficient pumping. Its understanding provides important insights into cardiac regeneration therapies. Recent evidence implies that adrenergic signals are involved in the regulation of cardiac maturation, but the mechanistic underpinnings involved in this process are poorly understood. Herein, we explored the role of ß-adrenergic receptor (ß-AR) activation in determining structural and functional components of cardiomyocyte maturation. Temporal characterization of tyrosine hydroxylase and norepinephrine levels in the mouse heart revealed that sympathetic innervation develops during the first 3 wk of life, concurrent with the rise in ß-AR expression. To assess the impact of adrenergic inhibition on maturation, we treated mice with propranolol, isolated cardiomyocytes, and evaluated morphofunctional parameters. Propranolol treatment reduced heart weight, cardiomyocyte size, and cellular shortening, while it increased the pool of mononucleated myocytes, resulting in impaired maturation. No changes in t-tubules were observed in cells from propranolol mice. To establish a causal link between ß-AR signaling and cardiomyocyte maturation, mice were subjected to sympathectomy, followed or not by restoration with isoproterenol treatment. Cardiomyocytes from sympathectomyzed mice recapitulated the salient immaturity features of propranolol-treated mice, with the additional loss of t-tubules. Isoproterenol rescued the maturation deficits induced by sympathectomy, except for the t-tubule alterations. Our study identifies the ß-AR stimuli as a maturation promoting signal and implies that this pathway can be modulated to improve cardiac regeneration therapies.NEW & NOTEWORTHY Maturation involves a series of morphofunctional alterations vital to heart development. Its regulatory mechanisms are only now being unveiled. Evidence implies that adrenergic signaling regulates cardiac maturation, but the mechanisms are poorly understood. To address this point, we blocked ß-ARs or performed sympathectomy followed by rescue experiments with isoproterenol in neonatal mice. Our study identifies the ß-AR stimuli as a maturation signal for cardiomyocytes and highlights the importance of this pathway in cardiac regeneration therapies.


Assuntos
Miócitos Cardíacos , Propranolol , Transdução de Sinais , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Camundongos , Propranolol/farmacologia , Receptores Adrenérgicos beta/metabolismo , Camundongos Endogâmicos C57BL , Isoproterenol/farmacologia , Masculino , Coração/efeitos dos fármacos , Células Cultivadas , Agonistas Adrenérgicos beta/farmacologia , Norepinefrina/metabolismo , Norepinefrina/farmacologia , Antagonistas Adrenérgicos beta/farmacologia
3.
Eur J Pharmacol ; 971: 176488, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458410

RESUMO

OBJECTIVE: Pathological cardiac remodelling, including cardiac hypertrophy and fibrosis, is a key pathological process in the development of heart failure. However, effective therapeutic approaches are limited. The ß-adrenergic receptors are pivotal signalling molecules in regulating cardiac function. G-alpha interacting protein (GAIP)-interacting protein, C-terminus 1 (GIPC1) is a multifunctional scaffold protein that directly binds to the C-terminus of ß1-adrenergic receptor (ß1-adrenergic receptor). However, little is known about its roles in heart function. Therefore, we investigated the role of GIPC1 in cardiac remodelling and its underlying molecular mechanisms. METHODS: Pathological cardiac remodelling in mice was established via intraperitoneal injection of isoprenaline for 14 d or transverse aortic constriction surgery for 8 weeks. Myh6-driving cardiomyocyte-specific GIPC1 conditional knockout (GIPC1 cKO) mice and adeno-associated virus 9 (AAV9)-mediated GIPC1 overexpression mice were used. The effect of GIPC1 on cardiac remodelling was assessed using echocardiographic, histological, and biochemical analyses. RESULTS: GIPC1 expression was consistently reduced in the cardiac remodelling model. GIPC1 cKO mice exhibited spontaneous abnormalities, including cardiac hypertrophy, fibrosis, and systolic dysfunction. In contrast, AAV9-mediated GIPC1 overexpression in the heart attenuated isoproterenol-induced pathological cardiac remodelling in mice. Mechanistically, GIPC1 interacted with the ß1-adrenergic receptor and stabilised its expression by preventing its ubiquitination and degradation, maintaining the balance of ß1-adrenergic receptor/ß2-adrenergic receptor, and inhibiting hyperactivation of the mitogen-activated protein kinase signalling pathway. CONCLUSIONS: These results suggested that GIPC1 plays a cardioprotective role and is a promising therapeutic target for the treatment of cardiac remodelling and heart failure.


Assuntos
Insuficiência Cardíaca , Remodelação Ventricular , Animais , Camundongos , Cardiomegalia/patologia , Fibrose , Insuficiência Cardíaca/patologia , Isoproterenol/efeitos adversos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos , Receptores Adrenérgicos beta/metabolismo
4.
Neurosci Lett ; 825: 137708, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38438068

RESUMO

Dehydroeffusol, a major phenanthrene in Juncus effusus, protects neurodegeneration induced by intracellular Zn2+ ferried by extracellular amyloid ß1-42 (Aß1-42). Here we focused on adrenaline ß receptor activation and the induction of metallothioneins (MTs), intracellular Zn2+-binding proteins to test the protective mechanism of dehydroeffusol. Isoproterenol, an agonist of adrenergic ß receptors elevated the level of MTs in the dentate granule cell layer 1 day after intracerebroventricular (ICV) injection. When Aß1-42 was injected 1 day after isoproterenol injection, pre-injection of isoproterenol protected Aß1-42 toxicity via reducing the increase in intracellular Zn2+ after ICV injection of Aß1-42. On the basis of the effect of increased MTs by isoproterenol, dehydroeffusol (15 mg/kg body weight) was orally administered to mice once a day for 2 days. On day later, dehydroeffusol elevated the level of MTs and prevented Aß1-42 toxicity via reducing Aß1-42-mediated increase in intracellular Zn2+. In contrast, propranolol, an antagonist of adrenergic ß receptors reduced the level of MTs increased by dehydroeffusol, resulting in invalidating the preventive effect of dehydroeffusol on Aß1-42 toxicity. The present study indicates that blockage of MT synthesis via adrenaline ß receptor activation invalidates dehydroeffusol-mediated prevention of Aß1-42 toxicity. It is likely that MT synthesis via adrenaline ß receptor activation is beneficial to neuroprotection and that oral intake of dehydroeffusol preventively serves against the Aß1-42 toxicity.


Assuntos
Peptídeos beta-Amiloides , Metalotioneína , Fenantrenos , Camundongos , Animais , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Epinefrina , Isoproterenol , Receptores Adrenérgicos beta , Fragmentos de Peptídeos/toxicidade , Fragmentos de Peptídeos/metabolismo
5.
Arch Oral Biol ; 162: 105939, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38490087

RESUMO

BACKGROUND: Psychological stressors have been related to tumor progression through the activation of beta-adrenergic receptors (ß-AR) in several types of cancer. PURPOSE: This study aimed to investigate the expressions of ß1- and ß2-AR and their association with psychological and clinicopathological variables in patients with oral squamous cell carcinoma. METHODS: Tumor samples from 99 patients diagnosed with OSCC were subjected to immunohistochemical reaction to detect the expression of ß1-AR and ß2-AR. Anxiety and depression symptoms were assessed using the Beck Anxiety Inventory and Beck Depression Inventory (BDI), respectively. The Brunel Mood Scale was used for measuring affective mood states. RESULTS: Univariate analyzes revealed that higher expression of ß1-AR was associated with increased alcohol consumption (p = 0.032), higher education (p = 0.042), worse sleep quality (p = 0.044) and increased levels of pain related to the primary tumor (p < 0.001). Higher expression of ß2-AR was related with regional metastasis (p = 0.014), increased levels of pain related to the primary tumor (p = 0.044), anxiety (p < 0.001) and depressive (p = 0.010) symptoms and higher mood scores of angry (p = 0.010) and fatigue (p = 0.010). Multivariate analysis identified that patients with advanced clinical stage had lower ß1-AR expression (OR=0.145, 95% CI=0.025-0.828, p = 0.003). Higher anxiety symptoms and higher mood fatigue are independent factors for increased ß2-AR expression (OR=4256, 95% CI=1439-12606, p = 0.009; OR=3816, 95% CI=1258-11,573, p = 0.018, respectively). CONCLUSION: This study reveal that anxiety, fatigue symptoms, and clinical staging are associated with tumor expression of beta-adrenergic receptors in patients with oral cancer.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Receptores Adrenérgicos beta 2/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias Bucais/patologia , Receptores Adrenérgicos beta , Fadiga , Dor
6.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473855

RESUMO

In order to determine the behavior of the right ventricle, we have reviewed the existing literature in the area of cardiac remodeling, signal transduction pathways, subcellular mechanisms, ß-adrenoreceptor-adenylyl cyclase system and myocardial catecholamine content during the development of left ventricular failure due to myocardial infarction. The right ventricle exhibited adaptive cardiac hypertrophy due to increases in different signal transduction pathways involving the activation of protein kinase C, phospholipase C and protein kinase A systems by elevated levels of vasoactive hormones such as catecholamines and angiotensin II in the circulation at early and moderate stages of heart failure. An increase in the sarcoplasmic reticulum Ca2+ transport without any changes in myofibrillar Ca2+-stimulated ATPase was observed in the right ventricle at early and moderate stages of heart failure. On the other hand, the right ventricle showed maladaptive cardiac hypertrophy at the severe stages of heart failure due to myocardial infarction. The upregulation and downregulation of ß-adrenoreceptor-mediated signal transduction pathways were observed in the right ventricle at moderate and late stages of heart failure, respectively. The catalytic activity of adenylate cyclase, as well as the regulation of this enzyme by Gs proteins, were seen to be augmented in the hypertrophied right ventricle at early, moderate and severe stages of heart failure. Furthermore, catecholamine stores and catecholamine uptake in the right ventricle were also affected as a consequence of changes in the sympathetic nervous system at different stages of heart failure. It is suggested that the hypertrophied right ventricle may serve as a compensatory mechanism to the left ventricle during the development of early and moderate stages of heart failure.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Humanos , Ventrículos do Coração/metabolismo , Insuficiência Cardíaca/metabolismo , Infarto do Miocárdio/metabolismo , Cardiomegalia/metabolismo , Miocárdio/metabolismo , Receptores Adrenérgicos beta/metabolismo , Catecolaminas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Adenilil Ciclases/metabolismo
7.
Exp Physiol ; 109(5): 791-803, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460127

RESUMO

The mechanisms behind renal vasodilatation elicited by stimulation of ß-adrenergic receptors are not clarified. As several classes of K channels are potentially activated, we tested the hypothesis that KV7 and BKCa channels contribute to the decreased renal vascular tone in vivo and in vitro. Changes in renal blood flow (RBF) during ß-adrenergic stimulation were measured in anaesthetized rats using an ultrasonic flow probe. The isometric tension of segmental arteries from normo- and hypertensive rats and segmental arteries from wild-type mice and mice lacking functional KV7.1 channels was examined in a wire-myograph. The ß-adrenergic agonist isoprenaline increased RBF significantly in vivo. Neither activation nor inhibition of KV7 and BKCa channels affected the ß-adrenergic RBF response. In segmental arteries from normo- and hypertensive rats, inhibition of KV7 channels significantly decreased the ß-adrenergic vasorelaxation. However, inhibiting BKCa channels was equally effective in reducing the ß-adrenergic vasorelaxation. The ß-adrenergic vasorelaxation was not different between segmental arteries from wild-type mice and mice lacking KV7.1 channels. As opposed to rats, inhibition of KV7 channels did not affect the murine ß-adrenergic vasorelaxation. Although inhibition and activation of KV7 channels or BKCa channels significantly changed baseline RBF in vivo, none of the treatments affected ß-adrenergic vasodilatation. In isolated segmental arteries, however, inhibition of KV7 and BKCa channels significantly reduced the ß-adrenergic vasorelaxation, indicating that the regulation of RBF in vivo is driven by several actors in order to maintain an adequate RBF. Our data illustrates the challenge in extrapolating results from in vitro to in vivo conditions.


Assuntos
Rim , Vasodilatação , Animais , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Masculino , Ratos , Camundongos , Rim/metabolismo , Rim/irrigação sanguínea , Canal de Potássio KCNQ1/metabolismo , Isoproterenol/farmacologia , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Camundongos Knockout , Receptores Adrenérgicos beta/metabolismo , Circulação Renal/efeitos dos fármacos , Circulação Renal/fisiologia , Camundongos Endogâmicos C57BL , Ratos Wistar , Hipertensão/fisiopatologia , Hipertensão/metabolismo
8.
Pflugers Arch ; 476(3): 407-421, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253680

RESUMO

25-Hydroxycholesterol (25HC) is a biologically active oxysterol, whose production greatly increases during inflammation by macrophages and dendritic cells. The inflammatory reactions are frequently accompanied by changes in heart regulation, such as blunting of the cardiac ß-adrenergic receptor (AR) signaling. Here, the mechanism of 25HC-dependent modulation of responses to ß-AR activation was studied in the atria of mice. 25HC at the submicromolar levels decreased the ß-AR-mediated positive inotropic effect and enhancement of the Ca2+ transient amplitude, without changing NO production. Positive inotropic responses to ß1-AR (but not ß2-AR) activation were markedly attenuated by 25HC. The depressant action of 25HC on the ß1-AR-mediated responses was prevented by selective ß3-AR antagonists as well as inhibitors of Gi protein, Gßγ, G protein-coupled receptor kinase 2/3, or ß-arrestin. Simultaneously, blockers of protein kinase D and C as well as a phosphodiesterase inhibitor did not preclude the negative action of 25HC on the inotropic response to ß-AR activation. Thus, 25HC can suppress the ß1-AR-dependent effects via engaging ß3-AR, Gi protein, Gßγ, G protein-coupled receptor kinase, and ß-arrestin. This 25HC-dependent mechanism can contribute to the inflammatory-related alterations in the atrial ß-adrenergic signaling.


Assuntos
Adrenérgicos , Átrios do Coração , Hidroxicolesteróis , Camundongos , Animais , Adrenérgicos/metabolismo , Átrios do Coração/metabolismo , Receptores Adrenérgicos beta , Receptores Adrenérgicos beta 2/metabolismo , beta-Arrestinas/metabolismo , Agonistas Adrenérgicos beta/farmacologia
9.
Melanoma Res ; 34(2): 89-95, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051781

RESUMO

The intricate pathways of the sympathetic nervous system hold an inherently protective role in the setting of acute stress. This is achieved through dynamic immunomodulatory and neurobiological networks. However, excessive and chronic exposure to these stress-induced stimuli appears to cause physiologic dysfunction through several mechanisms that may impair psychosocial, neurologic, and immunologic health. Numerous preclinical observations have identified the beta-2 adrenergic receptor (ß2-AR) subtype to possess the strongest impact on immune dysfunction in the setting of chronic stressful stimuli. This prolonged expression of ß2-ARs appears to suppress immune surveillance and promote tumorigenesis within multiple cancer types. This occurs through several pathways, including (1) decreasing the frequency and function of CD8 + T-cells infiltrating the tumor microenvironment (TME) via inhibition of metabolic reprogramming during T cell activation, and (2) establishing an immunosuppressive profile within the TME including promotion of an exhausted T cell phenotype while simultaneously enhancing local and paracrine metastatic potential. The use of nonselective ß-AR antagonists appears to reverse many chronic stress-induced tumorigenic pathways and may also provide an additive therapeutic benefit for various immune checkpoint modulating agents including commonly utilized immune checkpoint inhibitors. Here we review the translational and clinical observations highlighting the foundational hypotheses that chronic stress-induced ß-AR signaling promotes a pro-tumoral immunophenotype and that blockade of these pathways may augment the therapeutic response of immune checkpoint inhibition within the scope of melanoma.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Receptores Adrenérgicos beta , Receptores Adrenérgicos beta 2 , Melanoma/tratamento farmacológico , Transdução de Sinais , Carcinogênese , Inibidores de Checkpoint Imunológico , Microambiente Tumoral
10.
Chirality ; 36(1): e23627, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37957841

RESUMO

The ß-adrenergic receptor blocking agents are an important class of drug molecules. The present study reports a new chemo and chemo-enzymatic synthetic process for (RS)-, (R)-, and (S)-bunolol, one of the potent ß-adrenergic receptor blocker. In chemo-enzymatic process, CAL L4777 lipase was employed for enantioselective kinetic resolution to synthesize the enantiopure (R)-alcohol and (S)-ester from the corresponding racemic alcohol. Thereafter, the corresponding (R)-alcohol and deacylated (S)-ester were treated with tert-butylamine to produce (S)- and (R)-bunolol, respectively. In chemical approach, epichlorohydrin (RS-, R-, and S-) was used as a starting material via respective (RS)-, (S)-, and (R)-glycidyl ether as intermediates for synthesis of enantiomeric (RS)-, (R)-, and (S)-bunolol. In comparison between two approaches, it was found that the chemo-enzymatic process was more effective and resulted in enantiomeric excess of 98% with 35% yield.


Assuntos
Bunolol , Lipase , Lipase/química , Estereoisomerismo , Antagonistas Adrenérgicos beta , Ésteres , Receptores Adrenérgicos beta
11.
Mol Neurobiol ; 61(3): 1833-1844, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37787950

RESUMO

Norepinephrine (NE) is involved in auditory fear conditioning (AFC) in posttraumatic stress disorder (PTSD). However, it is still unclear how it acts on neurons. We aimed to investigate whether the activation of the ß-adrenergic receptor (ß-AR) improves AFC by sensitization of the prelimbic (PL) cortex at the animal, cellular, and molecular levels. In vivo single-cell electrophysiological recording was used to characterize the changes in neurons in the PL cortex after AFC. Then, PL neurons were locally administrated by the ß-AR agonist isoproterenol (ISO), the GABAaR agonist muscimol, or intervened by optogenetic method, respectively. Western blotting and immunohistochemistry were finally used to assess molecular changes. Noise and low-frequency tones induced similar AFC. The expression of ß-ARs in PL cortex neurons was upregulated after fear conditioning. Microinjection of muscimol into the PL cortex blocked the conformation of AFC, whereas ISO injection facilitated AFC. Moreover, PL neurons can be distinguished into two types, with type I but not type II neurons responding to conditioned sound and being regulated by ß-ARs. Our results showed that ß-ARs in the PL cortex regulate conditional fear learning by activating type I PL neurons.


Assuntos
Córtex Pré-Frontal , Receptores Adrenérgicos beta , Animais , Córtex Pré-Frontal/fisiologia , Muscimol , Razão Sinal-Ruído , Isoproterenol/farmacologia , Medo/fisiologia
12.
J Neurosci ; 44(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37989594

RESUMO

Glutamate spillover from the synapse is tightly regulated by astrocytes, limiting the activation of extrasynaptically located NMDA receptors (NMDAR). The processes of astrocytes are dynamic and can modulate synaptic physiology. Though norepinephrine (NE) and ß-adrenergic receptor (ß-AR) activity can modify astrocyte volume, this has yet to be confirmed outside of sensory cortical areas, nor has the effect of noradrenergic signaling on glutamate spillover and neuronal NMDAR activity been explored. We monitored changes to astrocyte process volume in response to noradrenergic agonists in the medial prefrontal cortex of male and female mice. Both NE and the ß-AR agonist isoproterenol (ISO) increased process volume by ∼20%, significantly higher than changes seen when astrocytes had G-protein signaling blocked by GDPßS. We measured the effect of ß-AR signaling on evoked NMDAR currents. While ISO did not affect single stimulus excitatory currents of Layer 5 pyramidal neurons, ISO reduced NMDAR currents evoked by 10 stimuli at 50 Hz, which elicits glutamate spillover, by 18%. After isolating extrasynaptic NMDARs by blocking synaptic NMDARs with the activity-dependent NMDAR blocker MK-801, ISO similarly reduced extrasynaptic NMDAR currents in response to 10 stimuli by 18%. Finally, blocking ß-AR signaling in the astrocyte network by loading them with GDPßS reversed the ISO effect on 10 stimuli-evoked NMDAR currents. These results demonstrate that astrocyte ß-AR activity reduces extrasynaptic NMDAR recruitment, suggesting that glutamate spillover is reduced.


Assuntos
Astrócitos , Receptores de N-Metil-D-Aspartato , Camundongos , Animais , Masculino , Feminino , Receptores de N-Metil-D-Aspartato/metabolismo , Astrócitos/metabolismo , Células Piramidais/fisiologia , Córtex Pré-Frontal/fisiologia , Ácido Glutâmico/fisiologia , Receptores Adrenérgicos beta , Sinapses/fisiologia
13.
Acta Pharmacol Sin ; 45(3): 531-544, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37919475

RESUMO

Cardiac inflammation contributes to heart failure (HF) induced by isoproterenol (ISO) through activating ß-adrenergic receptors (ß-AR). Recent evidence shows that myeloid differentiation factor 2 (MD2), a key protein in endotoxin-induced inflammation, mediates inflammatory heart diseases. In this study, we investigated the role of MD2 in ISO-ß-AR-induced heart injuries and HF. Mice were infused with ISO (30 mg·kg-1·d-1) via osmotic mini-pumps for 2 weeks. We showed that MD2 in cardiomyocytes and cardiac macrophages was significantly increased and activated in the heart tissues of ISO-challenged mice. Either MD2 knockout or administration of MD2 inhibitor L6H21 (10 mg/kg every 2 days, i.g.) could prevent mouse hearts from ISO-induced inflammation, remodelling and dysfunction. Bone marrow transplantation study revealed that both cardiomyocyte MD2 and bone marrow-derived macrophage MD2 contributed to ISO-induced cardiac inflammation and injuries. In ISO-treated H9c2 cardiomyocyte-like cells, neonatal rat primary cardiomyocytes and primary mouse peritoneal macrophages, MD2 knockout or pre-treatment with L6H21 (10 µM) alleviated ISO-induced inflammatory responses, and the conditioned medium from ISO-challenged macrophages promoted the hypertrophy and fibrosis in cardiomyocytes and fibroblasts. We demonstrated that ISO induced MD2 activation in cardiomyocytes via ß1-AR-cAMP-PKA-ROS signalling axis, and induced inflammatory responses in macrophages via ß2-AR-cAMP-PKA-ROS axis. This study identifies MD2 as a key inflammatory mediator and a promising therapeutic target for ISO-induced heart failure.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Ratos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Isoproterenol/toxicidade , Receptores Adrenérgicos beta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Macrófagos/metabolismo
14.
J Neurotrauma ; 41(7-8): 771-788, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38117124

RESUMO

Trauma is a serious public health issue, and remains a major cause of mortality and disability worldwide. The notion that genetic factors contribute to an individual's response to traumatic injury has advanced significantly. Genetic variations in severely injured patients have been linked to mortality, morbidity, and psychological outcomes. We conducted a comprehensive review of beta-adrenergic receptor polymorphisms and their impact on the pathogenetics of traumatic injuries, which could pave the way for a transformational frontier of personalized medicine in neurotrauma. It remains unclear why some individuals are vulnerable to worse outcomes, whereas others are resilient. Although genetic factors may be significant, the intricate interplay between environmental and genetic factors may be responsible for variations in the presentation and outcome after injury. Recent advancements in genetic analysis and molecular physiology have helped to shed light on the causes of such variability. Although exposure to trauma can initiate a cascade of stress-related responses, these responses alone are insufficient to explain etiopathogenesis. Therefore, gaining insights into how trauma and genetic predispositions to adrenergic variations interact at the molecular level to affect an individual's susceptibility and recuperation could provide an essential understanding of the molecular pathogenesis of traumatic injuries. Therefore, it is imperative to identify potential genetic and physiological markers to guide early management and prognosis of trauma. Such knowledge could pave the way for the discovery of novel biomarkers that can identify a transdiagnostic subgroup that is at high risk and requires early intervention. This could lead to the adoption of personalized medical approaches in neurotrauma care.


Assuntos
Medicina de Precisão , Receptores Adrenérgicos beta , Humanos , Receptores Adrenérgicos beta/genética , Polimorfismo Genético , Prognóstico , Predisposição Genética para Doença , Biomarcadores
15.
Med Res Rev ; 44(1): 422-452, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37470332

RESUMO

Soft tissue damage stimulates sympathetic nerves to release large amounts of catecholamine hormones which bind to ß-adrenergic receptors (ß-ARs) on the cell membrane surface. It activates the downstream effector molecules and impairs soft tissue wound healing. ß-blockers specifically inhibit ß-ARs activation in acute/chronic skin lesions and ulcerative hemangiomas. They also accelerate soft tissue wound healing by shortening the duration of inflammation, speeding keratinocyte migration and reepithelialization, promoting wound contraction and angiogenesis, and inhibiting bacterial virulence effects. In addition, ß-blockers shorten wound healing periods in patients with severe thermal damage by reducing the hypermetabolic response. While ß-blockers promote/inhibit corneal epithelial cell regeneration and restores limbal stem/progenitor cells function, it could well accelerate/delay corneal wound healing. Given these meaningful effects, a growing number of studies are focused on examining the efficacy and safety of ß-blockers in soft tissue wound repair, including acute and chronic wounds, severe thermal damage, ulcerated infantile hemangioma, corneal wounds, and other soft tissue disorders. However, an intensive investigation on their acting mechanisms is imperatively needed. The purpose of this article is to summerize the roles of ß-blockers in soft tissue wound healing and explore their clinical applications.


Assuntos
Antagonistas Adrenérgicos beta , Cicatrização , Humanos , Antagonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/uso terapêutico , Cicatrização/fisiologia , Receptores Adrenérgicos , Receptores Adrenérgicos beta
16.
Am J Med ; 137(1): 23-29, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37838238

RESUMO

Simultaneous initiation of quadruple therapy with angiotensin receptor-neprilysin inhibitor, beta-adrenergic receptor blocker, mineralocorticoid receptor antagonist, and sodium glucose cotransporter 2 inhibitor aims at prompt improvement and prevention of readmission in patients hospitalized for heart failure with reduced ejection fraction. However, titration of quadruple therapy is time consuming. Lengthy up-titration of quadruple therapy may negate the benefit of early initiation. Quadruple therapy should start with a sodium glucose cotransporter 2 inhibition and a mineralocorticoid antagonist, as both enable safe decongestion and require minimal or no titration. Depending on the level of decongestion and clinical characteristics, patients receive an angiotensin receptor-neprilysin inhibitor or a beta-adrenergic receptor blocker to be titrated after hospital discharge. Outpatient addition of an angiotensin receptor-neprilysin inhibitor to a beta-adrenergic receptor blocker or vice versa completes the quadruple therapy scheme. By focusing on decongestion and matching intervention to patients' profile, the present therapeutic sequence allows rapid implementation of quadruple therapy at fully recommended doses.


Assuntos
Insuficiência Cardíaca , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Neprilisina/farmacologia , Neprilisina/uso terapêutico , Volume Sistólico/fisiologia , Antagonistas de Receptores de Angiotensina/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Antiarrítmicos/uso terapêutico , Antagonistas Adrenérgicos beta , Inibidores Enzimáticos/uso terapêutico , Receptores Adrenérgicos beta/uso terapêutico , Receptores de Angiotensina/uso terapêutico , Assistência Centrada no Paciente , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico
17.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139121

RESUMO

Chronic heart failure is associated with reduced myocardial ß-adrenergic receptor expression and mitochondrial function. Since these data coincide with increased plasma catecholamine levels, we investigated the relation between myocardial ß-receptor expression and mitochondrial respiratory activity under conditions of physiological catecholamine concentrations. This post hoc analysis used material of a prospective randomized, controlled study on 12 sexually mature (age 20-24 weeks) Early Life Stress or control pigs (weaning at day 21 and 28-35 after birth, respectively) of either sex. Measurements in anesthetized, mechanically ventilated, and instrumented animals comprised serum catecholamine (liquid-chromatography/tandem-mass-spectrometry) and 8-isoprostane levels, whole blood superoxide anion concentrations (electron spin resonance), oxidative DNA strand breaks (tail moment in the "comet assay"), post mortem cardiac tissue mitochondrial respiration, and immunohistochemistry (ß2-adrenoreceptor, mitochondrial respiration complex, and nitrotyrosine expression). Catecholamine concentrations were inversely related to myocardial mitochondrial respiratory activity and ß2-adrenoceptor expression, whereas there was no relation to mitochondrial respiratory complex expression. Except for a significant, direct, non-linear relation between DNA damage and noradrenaline levels, catecholamine concentrations were unrelated to markers of oxidative stress. The present study suggests that physiological variations of the plasma catecholamine concentrations, e.g., due to physical and/or psychological stress, may affect cardiac ß2-adrenoceptor expression and mitochondrial respiration.


Assuntos
Catecolaminas , Respiração Artificial , Animais , Mitocôndrias Cardíacas/metabolismo , Estudos Prospectivos , Receptores Adrenérgicos beta/metabolismo , Suínos
18.
Circ Res ; 133(12): 1040-1055, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-37961889

RESUMO

BACKGROUND: Nitric oxide (NO) has been identified as a signaling molecule generated during ß-adrenergic receptor stimulation in the heart. Furthermore, a role for NO in triggering spontaneous Ca2+ release via S-nitrosylation of CaMKIIδ (Ca2+/calmodulin kinase II delta) is emerging. NO donors are routinely used clinically for their cardioprotective effects on the heart, but it is unknown how NO donors modulate the proarrhythmic CaMKII to alter cardiac arrhythmia incidence. We test the role of S-nitrosylation of CaMKIIδ at the Cysteine-273 inhibitory site and cysteine-290 activating site in cardiac Ca2+ handling and arrhythmogenesis before and during ß-adrenergic receptor stimulation. METHODS: We measured Ca2+-handling in isolated cardiomyocytes from C57BL/6J wild-type (WT) mice and mice lacking CaMKIIδ expression (CaMKIIδ-KO) or with deletion of the S-nitrosylation site on CaMKIIδ at cysteine-273 or cysteine-290 (CaMKIIδ-C273S and -C290A knock-in mice). Cardiomyocytes were exposed to NO donors, S-nitrosoglutathione (GSNO; 150 µM), sodium nitroprusside (200 µM), and ß-adrenergic agonist isoproterenol (100 nmol/L). RESULTS: Both WT and CaMKIIδ-KO cardiomyocytes responded to isoproterenol with a full inotropic and lusitropic Ca2+ transient response as well as increased Ca2+ spark frequency. However, the increase in Ca2+ spark frequency was significantly attenuated in CaMKIIδ-KO cardiomyocytes. The protection from isoproterenol-induced Ca2+ sparks and waves was mimicked by GSNO pretreatment in WT cardiomyocytes but lost in CaMKIIδ-C273S cardiomyocytes. When GSNO was applied after isoproterenol, this protection was not observed in WT or CaMKIIδ-C273S but was apparent in CaMKIIδ-C290A. In Langendorff-perfused isolated hearts, GSNO pretreatment limited isoproterenol-induced arrhythmias in WT but not CaMKIIδ-C273S hearts, while GSNO exposure after isoproterenol sustained or exacerbated arrhythmic events. CONCLUSIONS: We conclude that prior S-nitrosylation of CaMKIIδ at cysteine-273 can limit subsequent ß-adrenergic receptor-induced arrhythmias, but that S-nitrosylation at cysteine-290 might worsen or sustain ß-adrenergic receptor-induced arrhythmias. This has important implications for the administration of NO donors in the clinical setting.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Óxido Nítrico , Camundongos , Animais , Isoproterenol/farmacologia , Óxido Nítrico/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cisteína/metabolismo , Camundongos Endogâmicos C57BL , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Fosforilação , Receptores Adrenérgicos beta/metabolismo , Cálcio/metabolismo , Retículo Sarcoplasmático/metabolismo
19.
J Neurosci ; 43(50): 8621-8636, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-37845031

RESUMO

Astrocytes play essential roles in the developing nervous system, including supporting synapse function. These astrocyte support functions emerge coincident with brain maturation and may be tailored in a region-specific manner. For example, gray matter astrocytes have elaborate synapse-associated processes and are morphologically and molecularly distinct from white matter astrocytes. This raises the question of whether there are unique environmental cues that promote gray matter astrocyte identity and synaptogenic function. We previously identified adrenergic receptors as preferentially enriched in developing gray versus white matter astrocytes, suggesting that noradrenergic signaling could be a cue that promotes the functional maturation of gray matter astrocytes. We first characterized noradrenergic projections during postnatal brain development in mouse and human, finding that process density was higher in the gray matter and increased concurrently with astrocyte maturation. RNA sequencing revealed that astrocytes in both species expressed α- and ß-adrenergic receptors. We found that stimulation of ß-adrenergic receptors increased primary branching of rodent astrocytes in vitro Conversely, astrocyte-conditional knockout of the ß1-adrenergic receptor reduced the size of gray matter astrocytes and led to dysregulated sensorimotor integration in female mice. These studies suggest that adrenergic signaling to developing astrocytes impacts their morphology and has implications for adult behavior, particularly in female animals. More broadly, they demonstrate a mechanism through which environmental cues impact astrocyte development. Given the key roles of norepinephrine in brain states, such as arousal, stress, and learning, these findings could prompt further inquiry into how developmental stressors impact astrocyte development and adult brain function.SIGNIFICANCE STATEMENT This study demonstrates a role for noradrenergic signaling in the development of gray matter astrocytes. We provide new evidence that the ß1-adrenergic receptor is robustly expressed by both mouse and human astrocytes, and that conditional KO of the ß1-adrenergic receptor from female mouse astrocytes impairs gray matter astrocyte maturation. Moreover, female conditional KO mice exhibit behavioral deficits in two paradigms that test sensorimotor function. Given the emerging interest in moving beyond RNA sequencing to probe specific pathways that underlie astrocyte heterogeneity, this study provides a foundation for future investigation into the effect of noradrenergic signaling on astrocyte functions in conditions where noradrenergic signaling is altered, such as stress, arousal, and learning.


Assuntos
Adrenérgicos , Astrócitos , Humanos , Camundongos , Animais , Feminino , Adrenérgicos/metabolismo , Astrócitos/metabolismo , Transdução de Sinais , Norepinefrina/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos
20.
S Afr Med J ; 113(9): 25-29, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37882131

RESUMO

BACKGROUND: Beta-adrenergic receptor blocker (BARB) drugs are a wide range of medicines that are used in various conditions, including chronic heart failure (HF). Several studies have reported a wide-ranging inappropriate use of evidence-based beta-blockers (EBBBs) in chronic HF in both inpatients and outpatients. OBJECTIVES: To assess the utilisation and optimisation of EBBBs among patients with HF who presented with a reduced ejection fraction (HFrEF). METHODS: A hospital-based retrospective cross-sectional study was carried out at the Adult University Teaching Hospital (AUTH), in Lusaka, Zambia, where patient medical files for the period of 1 July 2018 to 31 July 2021 were reviewed. Patient information, including file number, age, sex, type of BARB and the dose used, was recorded on the developed and validated checklist. Multivariable regression analysis was performed to identify factors associated with utilisation of BARBs. RESULTS: Of the 173 medical records reviewed, BARBs were utilised in 101 (58.4%) patients. Among the patients who utilised BARBs, 96 (95.0%) were taking EBBBs, while the rest (n=5, 5.0 %) were taking atenolol, which is a non-EBBB. Among the patients who were on EBBBs, none of them received the optimal dose. Age ≥65 years (adjusted odds ratio (aOR) 0.3, 95% confidence interval (CI) 0.17 - 0.64), previous hospitalisation (aOR 0.3, 95% CI 0.13 - 0.51) and furosemide dose ≥40 mg (aOR 0.4, 95% CI 0.21 - 0.64) were significantly associated with lower likelihood of BARB utilisation. New York Heart Association (NYHA) class II (aOR 3.4, 95% CI 1.08 - 10.7), NYHA class III (aOR 4.8, 95% CI 1.65 - 13.7) and patients using at least 5 medications (aOR 5.0, 95% CI 2.91 - 8.77) were independent predictors of BARB utilisation. CONCLUSION: This study showed that 95.0% of chronic HF patients were utilising EBBBs, and none received the optimal dose as recommended in the guidelines. Pharmacotherapy with EBBBs should be optimised among patients with chronic HfrEF, as these drugs reduce both morbidity and mortality.


Assuntos
Insuficiência Cardíaca , Adulto , Humanos , Idoso , Insuficiência Cardíaca/tratamento farmacológico , Volume Sistólico , Estudos Transversais , Estudos Retrospectivos , Zâmbia , África do Sul , Antagonistas Adrenérgicos beta/uso terapêutico , Doença Crônica , Receptores Adrenérgicos beta/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...